10 ME 312 APPLIED THERMODYNAMICS – II (SI UNITS) III B.Tech I Semester

(with effect from the academic year 2012-2013)

Credits: 4

Lectures/week: 4 Hrs Sessional Marks: 40 University Exam: 3 Hrs End Examination Marks: 60

UNIT-I

Reciprocating Compressors

Mechanical details - Methods of compression - shaft work and isothermal efficiency of a single stage compressor indicator diagram – effect of clearance – volumetric efficiency – losses during compression – multistage compression optimum pressure condition in two stage compression inter coolers and after coolers

UNIT - II

Rotary Compressors

- positive displacement and rotary dynamic (non-positive Classification displacement) compressors - fans - blowers and compressors - static and total head centrifugal compressors velocity diagrams - type of impeller vanes - slip factor - diffuser isentropic efficiency – axial flow compressors – velocity diagrams – degree of reaction – isentropic efficiency

UNIT - III

Gas Turbines & Jet propulsions

Simple gas turbine cycle - open and closed cycle - constant volume cycle — constant pressure cycle - efficiency and work output - cycle with inter coolers - reheat and regeneration cycles, losses in a turbine

Jet Propulsion

Specific thrust – thermal efficiency and propulsion efficiency turbo prop – turbo jet – rocket propulsion – performance evaluation

UNIT – IV

Refrigeration

Performance and capacity of refrigeration – refrigeration cycles – vapour compression cycles – properties of common refrigerants – vapour absorption cycles

UNIT - V

Air Conditioning

Psychometry – psychometric chart – psychometric process, effective temperature principles of air conditioning - bypass factor - simple systems for winter and summer air conditioning

TEXT BOOKS:

1. Heat Engineering : Vasandani V P and Kumar D S

2. Heat Engines : Ballaney P L

REFERENCE BOOKS:

1. Applied Thermodynamics : Eastop and Mckankey

2. Engineering Thermodynamics : Nag P K

3. Cryogenic Engineering : Russel B Scott